|
|
/*
|
|
|
|
|
|
Tracker based on Kernelized Correlation Filter (KCF) [1] and Circulant Structure with Kernels (CSK) [2].
|
|
|
CSK is implemented by using raw gray level features, since it is a single-channel filter.
|
|
|
KCF is implemented by using HOG features (the default), since it extends CSK to multiple channels.
|
|
|
|
|
|
[1] J. F. Henriques, R. Caseiro, P. Martins, J. Batista,
|
|
|
"High-Speed Tracking with Kernelized Correlation Filters", TPAMI 2015.
|
|
|
|
|
|
[2] J. F. Henriques, R. Caseiro, P. Martins, J. Batista,
|
|
|
"Exploiting the Circulant Structure of Tracking-by-detection with Kernels", ECCV 2012.
|
|
|
|
|
|
Authors: Joao Faro, Christian Bailer, Joao F. Henriques
|
|
|
Contacts: joaopfaro@gmail.com, Christian.Bailer@dfki.de, henriques@isr.uc.pt
|
|
|
Institute of Systems and Robotics - University of Coimbra / Department Augmented Vision DFKI
|
|
|
|
|
|
|
|
|
Constructor parameters, all boolean:
|
|
|
hog: use HOG features (default), otherwise use raw pixels
|
|
|
fixed_window: fix window size (default), otherwise use ROI size (slower but more accurate)
|
|
|
multiscale: use multi-scale tracking (default; cannot be used with fixed_window = true)
|
|
|
|
|
|
Default values are set for all properties of the tracker depending on the above choices.
|
|
|
Their values can be customized further before calling init():
|
|
|
interp_factor: linear interpolation factor for adaptation
|
|
|
sigma: gaussian kernel bandwidth
|
|
|
lambda: regularization
|
|
|
cell_size: HOG cell size
|
|
|
padding: area surrounding the target, relative to its size
|
|
|
output_sigma_factor: bandwidth of gaussian target
|
|
|
template_size: template size in pixels, 0 to use ROI size
|
|
|
scale_step: scale step for multi-scale estimation, 1 to disable it
|
|
|
scale_weight: to downweight detection scores of other scales for added stability
|
|
|
|
|
|
For speed, the value (template_size/cell_size) should be a power of 2 or a product of small prime numbers.
|
|
|
|
|
|
Inputs to init():
|
|
|
image is the initial frame.
|
|
|
roi is a cv::Rect with the target positions in the initial frame
|
|
|
|
|
|
Inputs to update():
|
|
|
image is the current frame.
|
|
|
|
|
|
Outputs of update():
|
|
|
cv::Rect with target positions for the current frame
|
|
|
|
|
|
|
|
|
By downloading, copying, installing or using the software you agree to this license.
|
|
|
If you do not agree to this license, do not download, install,
|
|
|
copy or use the software.
|
|
|
|
|
|
|
|
|
License Agreement
|
|
|
For Open Source Computer Vision Library
|
|
|
(3-clause BSD License)
|
|
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
|
are permitted provided that the following conditions are met:
|
|
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
|
this list of conditions and the following disclaimer.
|
|
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
|
this list of conditions and the following disclaimer in the documentation
|
|
|
and/or other materials provided with the distribution.
|
|
|
|
|
|
* Neither the names of the copyright holders nor the names of the contributors
|
|
|
may be used to endorse or promote products derived from this software
|
|
|
without specific prior written permission.
|
|
|
|
|
|
This software is provided by the copyright holders and contributors "as is" and
|
|
|
any express or implied warranties, including, but not limited to, the implied
|
|
|
warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
In no event shall copyright holders or contributors be liable for any direct,
|
|
|
indirect, incidental, special, exemplary, or consequential damages
|
|
|
(including, but not limited to, procurement of substitute goods or services;
|
|
|
loss of use, data, or profits; or business interruption) however caused
|
|
|
and on any theory of liability, whether in contract, strict liability,
|
|
|
or tort (including negligence or otherwise) arising in any way out of
|
|
|
the use of this software, even if advised of the possibility of such damage.
|
|
|
*/
|
|
|
|
|
|
//#ifndef _KCFTRACKER_HEADERS
|
|
|
#include "stdafx.h"
|
|
|
#include "kcftracker.hpp"
|
|
|
#include "ffttools.hpp"
|
|
|
#include "recttools.hpp"
|
|
|
#include "fhog.hpp"
|
|
|
#include "labdata.hpp"
|
|
|
|
|
|
//#endif
|
|
|
|
|
|
// Constructor
|
|
|
KCFTracker::KCFTracker(bool hog, bool fixed_window, bool multiscale, bool lab)
|
|
|
{
|
|
|
|
|
|
// Parameters equal in all cases
|
|
|
lambda = 0.0001;
|
|
|
padding = 2.5;
|
|
|
//output_sigma_factor = 0.1;
|
|
|
output_sigma_factor = 0.125;
|
|
|
|
|
|
|
|
|
if (hog) { // HOG
|
|
|
// VOT
|
|
|
interp_factor = 0.012;
|
|
|
sigma = 0.6;
|
|
|
// TPAMI
|
|
|
//interp_factor = 0.02;
|
|
|
//sigma = 0.5;
|
|
|
cell_size = 4;
|
|
|
_hogfeatures = true;
|
|
|
|
|
|
if (lab) {
|
|
|
interp_factor = 0.005;
|
|
|
sigma = 0.4;
|
|
|
//output_sigma_factor = 0.025;
|
|
|
output_sigma_factor = 0.1;
|
|
|
|
|
|
_labfeatures = true;
|
|
|
_labCentroids = cv::Mat(nClusters, 3, CV_32FC1, &data);
|
|
|
cell_sizeQ = cell_size*cell_size;
|
|
|
}
|
|
|
else{
|
|
|
_labfeatures = false;
|
|
|
}
|
|
|
}
|
|
|
else { // RAW
|
|
|
interp_factor = 0.075;
|
|
|
sigma = 0.2;
|
|
|
cell_size = 1;
|
|
|
_hogfeatures = false;
|
|
|
|
|
|
if (lab) {
|
|
|
printf("Lab features are only used with HOG features.\n");
|
|
|
_labfeatures = false;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
if (multiscale) { // multiscale
|
|
|
template_size = 96;
|
|
|
//template_size = 100;
|
|
|
scale_step = 1.05;
|
|
|
scale_weight = 0.95;
|
|
|
if (!fixed_window) {
|
|
|
//printf("Multiscale does not support non-fixed window.\n");
|
|
|
fixed_window = true;
|
|
|
}
|
|
|
}
|
|
|
else if (fixed_window) { // fit correction without multiscale
|
|
|
template_size = 96;
|
|
|
//template_size = 100;
|
|
|
scale_step = 1;
|
|
|
}
|
|
|
else {
|
|
|
template_size = 1;
|
|
|
scale_step = 1;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Initialize tracker
|
|
|
void KCFTracker::init(const cv::Rect &roi, cv::Mat image)
|
|
|
{
|
|
|
_roi = roi;
|
|
|
assert(roi.width >= 0 && roi.height >= 0);
|
|
|
_tmpl = getFeatures(image, 1);//只有第一次初始化的时候,第二个形参才为1,对第一帧特征进行汉宁窗平滑
|
|
|
_prob = createGaussianPeak(size_patch[0], size_patch[1]);//创建高斯峰,只有第一帧才用到
|
|
|
_alphaf = cv::Mat(size_patch[0], size_patch[1], CV_32FC2, float(0));////alphaf初始化
|
|
|
//_num = cv::Mat(size_patch[0], size_patch[1], CV_32FC2, float(0));
|
|
|
//_den = cv::Mat(size_patch[0], size_patch[1], CV_32FC2, float(0));
|
|
|
train(_tmpl, 1.0); // train with initial frame
|
|
|
}
|
|
|
// Update position based on the new frame
|
|
|
cv::Rect KCFTracker::update(cv::Mat image)
|
|
|
{
|
|
|
if (_roi.x + _roi.width <= 0) _roi.x = -_roi.width + 1;
|
|
|
if (_roi.y + _roi.height <= 0) _roi.y = -_roi.height + 1;
|
|
|
if (_roi.x >= image.cols - 1) _roi.x = image.cols - 2;
|
|
|
if (_roi.y >= image.rows - 1) _roi.y = image.rows - 2;
|
|
|
|
|
|
float cx = _roi.x + _roi.width / 2.0f;//中心点
|
|
|
float cy = _roi.y + _roi.height / 2.0f;
|
|
|
|
|
|
|
|
|
float peak_value;
|
|
|
cv::Point2f res = detect(_tmpl, getFeatures(image, 0, 1.0f), peak_value);//获取response的位置
|
|
|
|
|
|
//处理尺度变化的情况
|
|
|
if (scale_step != 1) {
|
|
|
// Test at a smaller _scale
|
|
|
float new_peak_value;
|
|
|
cv::Point2f new_res = detect(_tmpl, getFeatures(image, 0, 1.0f / scale_step), new_peak_value);
|
|
|
//update roi and other parameter 更新roi区域及其参数
|
|
|
if (scale_weight * new_peak_value > peak_value) {
|
|
|
res = new_res;
|
|
|
peak_value = new_peak_value;
|
|
|
_scale /= scale_step;
|
|
|
_roi.width /= scale_step;
|
|
|
_roi.height /= scale_step;
|
|
|
}
|
|
|
|
|
|
// Test at a bigger _scale
|
|
|
new_res = detect(_tmpl, getFeatures(image, 0, scale_step), new_peak_value);
|
|
|
|
|
|
if (scale_weight * new_peak_value > peak_value) {
|
|
|
res = new_res;
|
|
|
peak_value = new_peak_value;
|
|
|
_scale *= scale_step;
|
|
|
_roi.width *= scale_step;
|
|
|
_roi.height *= scale_step;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Adjust by cell size and _scale ????????????cell size????????????????????
|
|
|
_roi.x = cx - _roi.width / 2.0f + ((float) res.x * cell_size * _scale);
|
|
|
_roi.y = cy - _roi.height / 2.0f + ((float) res.y * cell_size * _scale);
|
|
|
//超出边界的情况
|
|
|
if (_roi.x >= image.cols - 1) _roi.x = image.cols - 1;
|
|
|
if (_roi.y >= image.rows - 1) _roi.y = image.rows - 1;
|
|
|
if (_roi.x + _roi.width <= 0) _roi.x = -_roi.width + 2;
|
|
|
if (_roi.y + _roi.height <= 0) _roi.y = -_roi.height + 2;
|
|
|
|
|
|
assert(_roi.width >= 0 && _roi.height >= 0);
|
|
|
|
|
|
//上面得到roi新的位置之后,再重新训练得到相关滤波器
|
|
|
cv::Mat x = getFeatures(image, 0);//提取新的roi特征
|
|
|
train(x, interp_factor);//训练得到新的滤波器
|
|
|
|
|
|
return _roi;
|
|
|
}
|
|
|
|
|
|
|
|
|
// Detect object in the current frame.
|
|
|
cv::Point2f KCFTracker::detect(cv::Mat z, cv::Mat x, float &peak_value)
|
|
|
{
|
|
|
using namespace FFTTools;
|
|
|
|
|
|
cv::Mat k = gaussianCorrelation(x, z);//作相关运算
|
|
|
cv::Mat res = (real(fftd(complexMultiplication(_alphaf, fftd(k)), true)));//获得response
|
|
|
|
|
|
//minMaxLoc only accepts doubles for the peak, and integer points for the coordinates
|
|
|
cv::Point2i pi;//存放响应response最大值所在的位置
|
|
|
double pv;//pv存放响应response最大值
|
|
|
//找到输入数组的最大/最小值,此处寻找最大值,pv存放最大值,pi存放最大值所在的位置
|
|
|
cv::minMaxLoc(res, NULL, &pv, NULL, &pi);
|
|
|
peak_value = (float) pv;
|
|
|
|
|
|
//subpixel peak estimation, coordinates will be non-integer
|
|
|
cv::Point2f p((float)pi.x, (float)pi.y);
|
|
|
//
|
|
|
//target location is at the maximum response. we must take into
|
|
|
//account the fact that, if the target doesn't move, the peak
|
|
|
//will appear at the top - left corner, not at the center(this is
|
|
|
//discussed in the paper).the responses wrap around cyclically.
|
|
|
if (pi.x > 0 && pi.x < res.cols-1) {
|
|
|
p.x += subPixelPeak(res.at<float>(pi.y, pi.x-1), peak_value, res.at<float>(pi.y, pi.x+1));
|
|
|
}
|
|
|
|
|
|
if (pi.y > 0 && pi.y < res.rows-1) {
|
|
|
p.y += subPixelPeak(res.at<float>(pi.y-1, pi.x), peak_value, res.at<float>(pi.y+1, pi.x));
|
|
|
}
|
|
|
|
|
|
p.x -= (res.cols) / 2;
|
|
|
p.y -= (res.rows) / 2;
|
|
|
|
|
|
return p; //responses最大响应对应的目标位置
|
|
|
}
|
|
|
|
|
|
// train tracker with a single image
|
|
|
void KCFTracker::train(cv::Mat x, float train_interp_factor)
|
|
|
{
|
|
|
using namespace FFTTools;
|
|
|
|
|
|
cv::Mat k = gaussianCorrelation(x, x);
|
|
|
cv::Mat alphaf = complexDivision(_prob, (fftd(k) + lambda));
|
|
|
|
|
|
_tmpl = (1 - train_interp_factor) * _tmpl + (train_interp_factor) * x;
|
|
|
_alphaf = (1 - train_interp_factor) * _alphaf + (train_interp_factor) * alphaf;
|
|
|
|
|
|
|
|
|
/*cv::Mat kf = fftd(gaussianCorrelation(x, x));
|
|
|
cv::Mat num = complexMultiplication(kf, _prob);
|
|
|
cv::Mat den = complexMultiplication(kf, kf + lambda);
|
|
|
|
|
|
_tmpl = (1 - train_interp_factor) * _tmpl + (train_interp_factor) * x;
|
|
|
_num = (1 - train_interp_factor) * _num + (train_interp_factor) * num;
|
|
|
_den = (1 - train_interp_factor) * _den + (train_interp_factor) * den;
|
|
|
|
|
|
_alphaf = complexDivision(_num, _den);*/
|
|
|
|
|
|
}
|
|
|
|
|
|
// Evaluates a Gaussian kernel with bandwidth SIGMA for all relative shifts between input images X and Y,
|
|
|
// which must both be MxN. They must also be periodic (ie., pre-processed with a cosine window).
|
|
|
cv::Mat KCFTracker::gaussianCorrelation(cv::Mat x1, cv::Mat x2)
|
|
|
{
|
|
|
using namespace FFTTools;
|
|
|
cv::Mat c = cv::Mat( cv::Size(size_patch[1], size_patch[0]), CV_32F, cv::Scalar(0) );
|
|
|
// HOG features
|
|
|
if (_hogfeatures) {
|
|
|
cv::Mat caux;
|
|
|
cv::Mat x1aux;
|
|
|
cv::Mat x2aux;
|
|
|
for (int i = 0; i < size_patch[2]; i++) {
|
|
|
x1aux = x1.row(i); // Procedure do deal with cv::Mat multichannel bug
|
|
|
x1aux = x1aux.reshape(1, size_patch[0]);
|
|
|
x2aux = x2.row(i).reshape(1, size_patch[0]);
|
|
|
cv::mulSpectrums(fftd(x1aux), fftd(x2aux), caux, 0, true);
|
|
|
caux = fftd(caux, true);
|
|
|
rearrange(caux);
|
|
|
caux.convertTo(caux,CV_32F);
|
|
|
c = c + real(caux);
|
|
|
}
|
|
|
}
|
|
|
// Gray features
|
|
|
else {
|
|
|
cv::mulSpectrums(fftd(x1), fftd(x2), c, 0, true);
|
|
|
c = fftd(c, true);
|
|
|
rearrange(c);
|
|
|
c = real(c);
|
|
|
}
|
|
|
cv::Mat d;
|
|
|
cv::max(( (cv::sum(x1.mul(x1))[0] + cv::sum(x2.mul(x2))[0])- 2. * c) / (size_patch[0]*size_patch[1]*size_patch[2]) , 0, d);
|
|
|
|
|
|
cv::Mat k;
|
|
|
cv::exp((-d / (sigma * sigma)), k);
|
|
|
return k;
|
|
|
}
|
|
|
|
|
|
// Create Gaussian Peak. Function called only in the first frame.
|
|
|
cv::Mat KCFTracker::createGaussianPeak(int sizey, int sizex)
|
|
|
{
|
|
|
cv::Mat_<float> res(sizey, sizex);
|
|
|
|
|
|
int syh = (sizey) / 2;
|
|
|
int sxh = (sizex) / 2;
|
|
|
|
|
|
float output_sigma = std::sqrt((float) sizex * sizey) / padding * output_sigma_factor;
|
|
|
float mult = -0.5 / (output_sigma * output_sigma);
|
|
|
|
|
|
for (int i = 0; i < sizey; i++)
|
|
|
for (int j = 0; j < sizex; j++)
|
|
|
{
|
|
|
int ih = i - syh;
|
|
|
int jh = j - sxh;
|
|
|
res(i, j) = std::exp(mult * (float) (ih * ih + jh * jh));
|
|
|
}
|
|
|
return FFTTools::fftd(res);
|
|
|
}
|
|
|
|
|
|
// Obtain sub-window from image, with replication-padding and extract features
|
|
|
cv::Mat KCFTracker::getFeatures(const cv::Mat & image, bool inithann, float scale_adjust)
|
|
|
{
|
|
|
cv::Rect extracted_roi;
|
|
|
|
|
|
float cx = _roi.x + _roi.width / 2;
|
|
|
float cy = _roi.y + _roi.height / 2;
|
|
|
|
|
|
if (inithann) {//汉宁窗??????
|
|
|
int padded_w = _roi.width * padding;
|
|
|
int padded_h = _roi.height * padding;
|
|
|
|
|
|
if (template_size > 1) { // Fit largest dimension to the given template size
|
|
|
if (padded_w >= padded_h) //fit to width
|
|
|
_scale = padded_w / (float) template_size;
|
|
|
else
|
|
|
_scale = padded_h / (float) template_size;
|
|
|
|
|
|
_tmpl_sz.width = padded_w / _scale;
|
|
|
_tmpl_sz.height = padded_h / _scale;
|
|
|
}
|
|
|
else { //No template size given, use ROI size
|
|
|
_tmpl_sz.width = padded_w;
|
|
|
_tmpl_sz.height = padded_h;
|
|
|
_scale = 1;
|
|
|
// original code from paper:
|
|
|
/*if (sqrt(padded_w * padded_h) >= 100) { //Normal size
|
|
|
_tmpl_sz.width = padded_w;
|
|
|
_tmpl_sz.height = padded_h;
|
|
|
_scale = 1;
|
|
|
}
|
|
|
else { //ROI is too big, track at half size
|
|
|
_tmpl_sz.width = padded_w / 2;
|
|
|
_tmpl_sz.height = padded_h / 2;
|
|
|
_scale = 2;
|
|
|
}*/
|
|
|
}
|
|
|
|
|
|
if (_hogfeatures) {
|
|
|
// Round to cell size and also make it even
|
|
|
_tmpl_sz.width = ( ( (int)(_tmpl_sz.width / (2 * cell_size)) ) * 2 * cell_size ) + cell_size*2;
|
|
|
_tmpl_sz.height = ( ( (int)(_tmpl_sz.height / (2 * cell_size)) ) * 2 * cell_size ) + cell_size*2;
|
|
|
}
|
|
|
else { //Make number of pixels even (helps with some logic involving half-dimensions)
|
|
|
_tmpl_sz.width = (_tmpl_sz.width / 2) * 2;
|
|
|
_tmpl_sz.height = (_tmpl_sz.height / 2) * 2;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
extracted_roi.width = scale_adjust * _scale * _tmpl_sz.width;
|
|
|
extracted_roi.height = scale_adjust * _scale * _tmpl_sz.height;
|
|
|
|
|
|
// center roi with new size
|
|
|
extracted_roi.x = cx - extracted_roi.width / 2;
|
|
|
extracted_roi.y = cy - extracted_roi.height / 2;
|
|
|
|
|
|
cv::Mat FeaturesMap;
|
|
|
//obtain a subwindow for detection at the position from last
|
|
|
// frame, and convert to Fourier domain(its size is unchanged)
|
|
|
// 在本帧中获取前一帧目标位置的子窗口
|
|
|
cv::Mat z = RectTools::subwindow(image, extracted_roi, cv::BORDER_REPLICATE);
|
|
|
//然后要对z提取特征,然后再到频域上与相关滤波器作相关,得到response之后产生新的目标位置
|
|
|
//////////////////////////////////////////////////////////////
|
|
|
///////////////////////////////////////////////////////////////
|
|
|
if (z.cols != _tmpl_sz.width || z.rows != _tmpl_sz.height) {
|
|
|
cv::resize(z, z, _tmpl_sz);
|
|
|
}
|
|
|
|
|
|
// HOG features
|
|
|
if (_hogfeatures) {
|
|
|
IplImage z_ipl = z;
|
|
|
CvLSVMFeatureMapCaskade *map;
|
|
|
getFeatureMaps(&z_ipl, cell_size, &map);
|
|
|
normalizeAndTruncate(map,0.2f);
|
|
|
PCAFeatureMaps(map);
|
|
|
size_patch[0] = map->sizeY;
|
|
|
size_patch[1] = map->sizeX;
|
|
|
size_patch[2] = map->numFeatures;
|
|
|
|
|
|
FeaturesMap = cv::Mat(cv::Size(map->numFeatures,map->sizeX*map->sizeY), CV_32F, map->map); // Procedure do deal with cv::Mat multichannel bug
|
|
|
FeaturesMap = FeaturesMap.t();
|
|
|
freeFeatureMapObject(&map);
|
|
|
|
|
|
// Lab features //当lab = false时,用不到
|
|
|
if (_labfeatures) {
|
|
|
cv::Mat imgLab;
|
|
|
cvtColor(z, imgLab, CV_BGR2Lab);
|
|
|
unsigned char *input = (unsigned char*)(imgLab.data);
|
|
|
|
|
|
// Sparse output vector
|
|
|
cv::Mat outputLab = cv::Mat(_labCentroids.rows, size_patch[0]*size_patch[1], CV_32F, float(0));
|
|
|
|
|
|
int cntCell = 0;
|
|
|
// Iterate through each cell
|
|
|
for (int cY = cell_size; cY < z.rows-cell_size; cY+=cell_size){
|
|
|
for (int cX = cell_size; cX < z.cols-cell_size; cX+=cell_size){
|
|
|
// Iterate through each pixel of cell (cX,cY)
|
|
|
for(int y = cY; y < cY+cell_size; ++y){
|
|
|
for(int x = cX; x < cX+cell_size; ++x){
|
|
|
// Lab components for each pixel
|
|
|
float l = (float)input[(z.cols * y + x) * 3];
|
|
|
float a = (float)input[(z.cols * y + x) * 3 + 1];
|
|
|
float b = (float)input[(z.cols * y + x) * 3 + 2];
|
|
|
|
|
|
// Iterate trough each centroid
|
|
|
float minDist = FLT_MAX;
|
|
|
int minIdx = 0;
|
|
|
float *inputCentroid = (float*)(_labCentroids.data);
|
|
|
for(int k = 0; k < _labCentroids.rows; ++k){
|
|
|
float dist = ( (l - inputCentroid[3*k]) * (l - inputCentroid[3*k]) )
|
|
|
+ ( (a - inputCentroid[3*k+1]) * (a - inputCentroid[3*k+1]) )
|
|
|
+ ( (b - inputCentroid[3*k+2]) * (b - inputCentroid[3*k+2]) );
|
|
|
if(dist < minDist){
|
|
|
minDist = dist;
|
|
|
minIdx = k;
|
|
|
}
|
|
|
}
|
|
|
// Store result at output
|
|
|
outputLab.at<float>(minIdx, cntCell) += 1.0 / cell_sizeQ;
|
|
|
//((float*) outputLab.data)[minIdx * (size_patch[0]*size_patch[1]) + cntCell] += 1.0 / cell_sizeQ;
|
|
|
}
|
|
|
}
|
|
|
cntCell++;
|
|
|
}
|
|
|
}
|
|
|
// Update size_patch[2] and add features to FeaturesMap
|
|
|
size_patch[2] += _labCentroids.rows;
|
|
|
FeaturesMap.push_back(outputLab);
|
|
|
}
|
|
|
}
|
|
|
else { //raw pixel
|
|
|
FeaturesMap = RectTools::getGrayImage(z);
|
|
|
FeaturesMap -= (float) 0.5; // In Paper;
|
|
|
size_patch[0] = z.rows;
|
|
|
size_patch[1] = z.cols;
|
|
|
size_patch[2] = 1;
|
|
|
}
|
|
|
|
|
|
if (inithann) {//只有在第一帧的时候才会用到,创建/初始化 汉宁窗
|
|
|
createHanningMats();
|
|
|
}
|
|
|
FeaturesMap = hann.mul(FeaturesMap);//特征与汉宁窗相乘,起平滑作用
|
|
|
return FeaturesMap; //最后返回的是与汉宁窗相乘后的结果,,,后续还要进行与相关滤波器作相关
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
//////////////////////////////////////////////////////////////////////////////////
|
|
|
}
|
|
|
|
|
|
// Initialize Hanning window. Function called only in the first frame.
|
|
|
void KCFTracker::createHanningMats()
|
|
|
{
|
|
|
cv::Mat hann1t = cv::Mat(cv::Size(size_patch[1],1), CV_32F, cv::Scalar(0));
|
|
|
cv::Mat hann2t = cv::Mat(cv::Size(1,size_patch[0]), CV_32F, cv::Scalar(0));
|
|
|
|
|
|
for (int i = 0; i < hann1t.cols; i++)
|
|
|
hann1t.at<float > (0, i) = 0.5 * (1 - std::cos(2 * 3.14159265358979323846 * i / (hann1t.cols - 1)));
|
|
|
for (int i = 0; i < hann2t.rows; i++)
|
|
|
hann2t.at<float > (i, 0) = 0.5 * (1 - std::cos(2 * 3.14159265358979323846 * i / (hann2t.rows - 1)));
|
|
|
|
|
|
cv::Mat hann2d = hann2t * hann1t;
|
|
|
// HOG features
|
|
|
if (_hogfeatures) {
|
|
|
cv::Mat hann1d = hann2d.reshape(1,1); // Procedure do deal with cv::Mat multichannel bug
|
|
|
|
|
|
hann = cv::Mat(cv::Size(size_patch[0]*size_patch[1], size_patch[2]), CV_32F, cv::Scalar(0));
|
|
|
for (int i = 0; i < size_patch[2]; i++) {
|
|
|
for (int j = 0; j<size_patch[0]*size_patch[1]; j++) {
|
|
|
hann.at<float>(i,j) = hann1d.at<float>(0,j);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
// Gray features
|
|
|
else {
|
|
|
hann = hann2d;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Calculate sub-pixel peak for one dimension
|
|
|
float KCFTracker::subPixelPeak(float left, float center, float right)
|
|
|
{
|
|
|
float divisor = 2 * center - right - left;
|
|
|
//divisor = 0.28 0.35 0.27 0.37 0.30 0.33 0.24 0.38
|
|
|
//printf("%f \n", divisor);
|
|
|
if (divisor == 0)
|
|
|
return 0;
|
|
|
|
|
|
return 0.5 * (right - left) / divisor;
|
|
|
}
|