/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2013, University of Nizhny Novgorod, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/


//Modified from latentsvm module's "_lsvmc_latentsvm.h".


/*****************************************************************************/
/*                      Latent SVM prediction API                            */
/*****************************************************************************/

#ifndef _FHOG_H_
#define _FHOG_H_

#include <stdio.h>
//#include "_lsvmc_types.h"
//#include "_lsvmc_error.h"
//#include "_lsvmc_routine.h"

//#include "opencv2/imgproc.hpp"
#include "opencv2/imgproc/imgproc_c.h"


//modified from "_lsvmc_types.h"

// DataType: STRUCT featureMap
// FEATURE MAP DESCRIPTION
//   Rectangular map (sizeX x sizeY), 
//   every cell stores feature vector (dimension = numFeatures)
// map             - matrix of feature vectors
//                   to set and get feature vectors (i,j) 
//                   used formula map[(j * sizeX + i) * p + k], where
//                   k - component of feature vector in cell (i, j)
typedef struct{
    int sizeX;
    int sizeY;
    int numFeatures;
    float *map;
} CvLSVMFeatureMapCaskade;


#include "float.h"

#define PI    CV_PI

#define EPS 0.000001

#define F_MAX FLT_MAX
#define F_MIN -FLT_MAX

// The number of elements in bin
// The number of sectors in gradient histogram building
#define NUM_SECTOR 9

// The number of levels in image resize procedure
// We need Lambda levels to resize image twice
#define LAMBDA 10

// Block size. Used in feature pyramid building procedure
#define SIDE_LENGTH 8

#define VAL_OF_TRUNCATE 0.2f 


//modified from "_lsvm_error.h"
#define LATENT_SVM_OK 0
#define LATENT_SVM_MEM_NULL 2
#define DISTANCE_TRANSFORM_OK 1
#define DISTANCE_TRANSFORM_GET_INTERSECTION_ERROR -1
#define DISTANCE_TRANSFORM_ERROR -2
#define DISTANCE_TRANSFORM_EQUAL_POINTS -3
#define LATENT_SVM_GET_FEATURE_PYRAMID_FAILED -4
#define LATENT_SVM_SEARCH_OBJECT_FAILED -5
#define LATENT_SVM_FAILED_SUPERPOSITION -6
#define FILTER_OUT_OF_BOUNDARIES -7
#define LATENT_SVM_TBB_SCHEDULE_CREATION_FAILED -8
#define LATENT_SVM_TBB_NUMTHREADS_NOT_CORRECT -9
#define FFT_OK 2
#define FFT_ERROR -10
#define LSVM_PARSER_FILE_NOT_FOUND -11



/*
// Getting feature map for the selected subimage  
//
// API
// int getFeatureMaps(const IplImage * image, const int k, featureMap **map);
// INPUT
// image             - selected subimage
// k                 - size of cells
// OUTPUT
// map               - feature map
// RESULT
// Error status
*/
int getFeatureMaps(const IplImage * image, const int k, CvLSVMFeatureMapCaskade **map);


/*
// Feature map Normalization and Truncation 
//
// API
// int normalizationAndTruncationFeatureMaps(featureMap *map, const float alfa);
// INPUT
// map               - feature map
// alfa              - truncation threshold
// OUTPUT
// map               - truncated and normalized feature map
// RESULT
// Error status
*/
int normalizeAndTruncate(CvLSVMFeatureMapCaskade *map, const float alfa);

/*
// Feature map reduction
// In each cell we reduce dimension of the feature vector
// according to original paper special procedure
//
// API
// int PCAFeatureMaps(featureMap *map)
// INPUT
// map               - feature map
// OUTPUT
// map               - feature map
// RESULT
// Error status
*/
int PCAFeatureMaps(CvLSVMFeatureMapCaskade *map);


//modified from "lsvmc_routine.h"

int allocFeatureMapObject(CvLSVMFeatureMapCaskade **obj, const int sizeX, const int sizeY,
                          const int p);

int freeFeatureMapObject (CvLSVMFeatureMapCaskade **obj);


#endif