You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
229 lines
5.7 KiB
C++
229 lines
5.7 KiB
C++
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Copyright 2014 Anton Bikineev
|
|
// Copyright 2014 Christopher Kormanyos
|
|
// Copyright 2014 John Maddock
|
|
// Copyright 2014 Paul Bristow
|
|
// Distributed under the Boost
|
|
// Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
#ifndef BOOST_MATH_DETAIL_HYPERGEOMETRIC_CF_HPP
|
|
#define BOOST_MATH_DETAIL_HYPERGEOMETRIC_CF_HPP
|
|
|
|
namespace boost { namespace math { namespace detail {
|
|
|
|
// primary template for term of continued fraction
|
|
template <class T, unsigned p, unsigned q>
|
|
struct hypergeometric_pFq_cf_term;
|
|
|
|
// partial specialization for 0F1
|
|
template <class T>
|
|
struct hypergeometric_pFq_cf_term<T, 0u, 1u>
|
|
{
|
|
typedef std::pair<T,T> result_type;
|
|
|
|
hypergeometric_pFq_cf_term(const T& b, const T& z):
|
|
n(1), b(b), z(z),
|
|
term(std::make_pair(T(0), T(1)))
|
|
{
|
|
}
|
|
|
|
result_type operator()()
|
|
{
|
|
const result_type result = term;
|
|
++b; ++n;
|
|
numer = -(z / (b * n));
|
|
term = std::make_pair(numer, 1 - numer);
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
unsigned n;
|
|
T b;
|
|
const T z;
|
|
T numer;
|
|
result_type term;
|
|
};
|
|
|
|
// partial specialization for 1F0
|
|
template <class T>
|
|
struct hypergeometric_pFq_cf_term<T, 1u, 0u>
|
|
{
|
|
typedef std::pair<T,T> result_type;
|
|
|
|
hypergeometric_pFq_cf_term(const T& a, const T& z):
|
|
n(1), a(a), z(z),
|
|
term(std::make_pair(T(0), T(1)))
|
|
{
|
|
}
|
|
|
|
result_type operator()()
|
|
{
|
|
const result_type result = term;
|
|
++a; ++n;
|
|
numer = -((a * z) / n);
|
|
term = std::make_pair(numer, 1 - numer);
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
unsigned n;
|
|
T a;
|
|
const T z;
|
|
T numer;
|
|
result_type term;
|
|
};
|
|
|
|
// partial specialization for 1F1
|
|
template <class T>
|
|
struct hypergeometric_pFq_cf_term<T, 1u, 1u>
|
|
{
|
|
typedef std::pair<T,T> result_type;
|
|
|
|
hypergeometric_pFq_cf_term(const T& a, const T& b, const T& z):
|
|
n(1), a(a), b(b), z(z),
|
|
term(std::make_pair(T(0), T(1)))
|
|
{
|
|
}
|
|
|
|
result_type operator()()
|
|
{
|
|
const result_type result = term;
|
|
++a; ++b; ++n;
|
|
numer = -((a * z) / (b * n));
|
|
term = std::make_pair(numer, 1 - numer);
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
unsigned n;
|
|
T a, b;
|
|
const T z;
|
|
T numer;
|
|
result_type term;
|
|
};
|
|
|
|
// partial specialization for 1f2
|
|
template <class T>
|
|
struct hypergeometric_pFq_cf_term<T, 1u, 2u>
|
|
{
|
|
typedef std::pair<T,T> result_type;
|
|
|
|
hypergeometric_pFq_cf_term(const T& a, const T& b, const T& c, const T& z):
|
|
n(1), a(a), b(b), c(c), z(z),
|
|
term(std::make_pair(T(0), T(1)))
|
|
{
|
|
}
|
|
|
|
result_type operator()()
|
|
{
|
|
const result_type result = term;
|
|
++a; ++b; ++c; ++n;
|
|
numer = -((a * z) / ((b * c) * n));
|
|
term = std::make_pair(numer, 1 - numer);
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
unsigned n;
|
|
T a, b, c;
|
|
const T z;
|
|
T numer;
|
|
result_type term;
|
|
};
|
|
|
|
// partial specialization for 2f1
|
|
template <class T>
|
|
struct hypergeometric_pFq_cf_term<T, 2u, 1u>
|
|
{
|
|
typedef std::pair<T,T> result_type;
|
|
|
|
hypergeometric_pFq_cf_term(const T& a, const T& b, const T& c, const T& z):
|
|
n(1), a(a), b(b), c(c), z(z),
|
|
term(std::make_pair(T(0), T(1)))
|
|
{
|
|
}
|
|
|
|
result_type operator()()
|
|
{
|
|
const result_type result = term;
|
|
++a; ++b; ++c; ++n;
|
|
numer = -(((a * b) * z) / (c * n));
|
|
term = std::make_pair(numer, 1 - numer);
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
unsigned n;
|
|
T a, b, c;
|
|
const T z;
|
|
T numer;
|
|
result_type term;
|
|
};
|
|
|
|
template <class T, unsigned p, unsigned q, class Policy>
|
|
inline T compute_cf_pFq(detail::hypergeometric_pFq_cf_term<T, p, q>& term, const Policy& pol)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
|
|
const T result = tools::continued_fraction_b(
|
|
term,
|
|
boost::math::policies::get_epsilon<T, Policy>(),
|
|
max_iter);
|
|
boost::math::policies::check_series_iterations<T>(
|
|
"boost::math::hypergeometric_pFq_cf<%1%>(%1%,%1%,%1%)",
|
|
max_iter,
|
|
pol);
|
|
return result;
|
|
}
|
|
|
|
template <class T, class Policy>
|
|
inline T hypergeometric_0F1_cf(const T& b, const T& z, const Policy& pol)
|
|
{
|
|
detail::hypergeometric_pFq_cf_term<T, 0u, 1u> f(b, z);
|
|
T result = detail::compute_cf_pFq(f, pol);
|
|
result = ((z / b) / result) + 1;
|
|
return result;
|
|
}
|
|
|
|
template <class T, class Policy>
|
|
inline T hypergeometric_1F0_cf(const T& a, const T& z, const Policy& pol)
|
|
{
|
|
detail::hypergeometric_pFq_cf_term<T, 1u, 0u> f(a, z);
|
|
T result = detail::compute_cf_pFq(f, pol);
|
|
result = ((a * z) / result) + 1;
|
|
return result;
|
|
}
|
|
|
|
template <class T, class Policy>
|
|
inline T hypergeometric_1F1_cf(const T& a, const T& b, const T& z, const Policy& pol)
|
|
{
|
|
detail::hypergeometric_pFq_cf_term<T, 1u, 1u> f(a, b, z);
|
|
T result = detail::compute_cf_pFq(f, pol);
|
|
result = (((a * z) / b) / result) + 1;
|
|
return result;
|
|
}
|
|
|
|
template <class T, class Policy>
|
|
inline T hypergeometric_1F2_cf(const T& a, const T& b, const T& c, const T& z, const Policy& pol)
|
|
{
|
|
detail::hypergeometric_pFq_cf_term<T, 1u, 2u> f(a, b, c, z);
|
|
T result = detail::compute_cf_pFq(f, pol);
|
|
result = (((a * z) / (b * c)) / result) + 1;
|
|
return result;
|
|
}
|
|
|
|
template <class T, class Policy>
|
|
inline T hypergeometric_2F1_cf(const T& a, const T& b, const T& c, const T& z, const Policy& pol)
|
|
{
|
|
detail::hypergeometric_pFq_cf_term<T, 2u, 1u> f(a, b, c, z);
|
|
T result = detail::compute_cf_pFq(f, pol);
|
|
result = ((((a * b) * z) / c) / result) + 1;
|
|
return result;
|
|
}
|
|
|
|
} } } // namespaces
|
|
|
|
#endif // BOOST_MATH_DETAIL_HYPERGEOMETRIC_CF_HPP
|