You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

353 lines
10 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2015 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2015 Mateusz Loskot, London, UK.
// Copyright (c) 2014-2015 Adam Wulkiewicz, Lodz, Poland.
// This file was modified by Oracle on 2014-2021.
// Modifications copyright (c) 2014-2021 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_EQUALS_INTERFACE_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_EQUALS_INTERFACE_HPP
#include <cstddef>
#include <boost/variant/apply_visitor.hpp>
#include <boost/variant/static_visitor.hpp>
#include <boost/variant/variant_fwd.hpp>
#include <boost/geometry/core/coordinate_dimension.hpp>
#include <boost/geometry/core/reverse_dispatch.hpp>
#include <boost/geometry/core/tag.hpp>
#include <boost/geometry/core/tag_cast.hpp>
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/algorithms/not_implemented.hpp>
#include <boost/geometry/strategies/default_strategy.hpp>
#include <boost/geometry/strategies/detail.hpp>
#include <boost/geometry/strategies/relate/services.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
typename Geometry1,
typename Geometry2,
typename Tag1 = typename tag<Geometry1>::type,
typename Tag2 = typename tag<Geometry2>::type,
typename CastedTag1 = typename tag_cast<Tag1, pointlike_tag, linear_tag, areal_tag>::type,
typename CastedTag2 = typename tag_cast<Tag2, pointlike_tag, linear_tag, areal_tag>::type,
std::size_t DimensionCount = dimension<Geometry1>::type::value,
bool Reverse = reverse_dispatch<Geometry1, Geometry2>::type::value
>
struct equals: not_implemented<Tag1, Tag2>
{};
// If reversal is needed, perform it
template
<
typename Geometry1, typename Geometry2,
typename Tag1, typename Tag2,
typename CastedTag1, typename CastedTag2,
std::size_t DimensionCount
>
struct equals<Geometry1, Geometry2, Tag1, Tag2, CastedTag1, CastedTag2, DimensionCount, true>
: equals<Geometry2, Geometry1, Tag2, Tag1, CastedTag2, CastedTag1, DimensionCount, false>
{
template <typename Strategy>
static inline bool apply(Geometry1 const& g1, Geometry2 const& g2, Strategy const& strategy)
{
return equals
<
Geometry2, Geometry1,
Tag2, Tag1,
CastedTag2, CastedTag1,
DimensionCount,
false
>::apply(g2, g1, strategy);
}
};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
namespace resolve_strategy
{
template
<
typename Strategy,
bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategy>::value
>
struct equals
{
template <typename Geometry1, typename Geometry2>
static inline bool apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Strategy const& strategy)
{
return dispatch::equals
<
Geometry1, Geometry2
>::apply(geometry1, geometry2, strategy);
}
};
template <typename Strategy>
struct equals<Strategy, false>
{
template <typename Geometry1, typename Geometry2>
static inline bool apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Strategy const& strategy)
{
using strategies::relate::services::strategy_converter;
return dispatch::equals
<
Geometry1, Geometry2
>::apply(geometry1, geometry2,
strategy_converter<Strategy>::get(strategy));
}
};
template <>
struct equals<default_strategy, false>
{
template <typename Geometry1, typename Geometry2>
static inline bool apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
default_strategy)
{
typedef typename strategies::relate::services::default_strategy
<
Geometry1,
Geometry2
>::type strategy_type;
return dispatch::equals
<
Geometry1, Geometry2
>::apply(geometry1, geometry2, strategy_type());
}
};
} // namespace resolve_strategy
namespace resolve_variant {
template <typename Geometry1, typename Geometry2>
struct equals
{
template <typename Strategy>
static inline bool apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Strategy const& strategy)
{
concepts::check_concepts_and_equal_dimensions
<
Geometry1 const,
Geometry2 const
>();
return resolve_strategy::equals
<
Strategy
>::apply(geometry1, geometry2, strategy);
}
};
template <BOOST_VARIANT_ENUM_PARAMS(typename T), typename Geometry2>
struct equals<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)>, Geometry2>
{
template <typename Strategy>
struct visitor: static_visitor<bool>
{
Geometry2 const& m_geometry2;
Strategy const& m_strategy;
visitor(Geometry2 const& geometry2, Strategy const& strategy)
: m_geometry2(geometry2)
, m_strategy(strategy)
{}
template <typename Geometry1>
inline bool operator()(Geometry1 const& geometry1) const
{
return equals<Geometry1, Geometry2>
::apply(geometry1, m_geometry2, m_strategy);
}
};
template <typename Strategy>
static inline bool apply(
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry1,
Geometry2 const& geometry2,
Strategy const& strategy
)
{
return boost::apply_visitor(visitor<Strategy>(geometry2, strategy), geometry1);
}
};
template <typename Geometry1, BOOST_VARIANT_ENUM_PARAMS(typename T)>
struct equals<Geometry1, boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
{
template <typename Strategy>
struct visitor: static_visitor<bool>
{
Geometry1 const& m_geometry1;
Strategy const& m_strategy;
visitor(Geometry1 const& geometry1, Strategy const& strategy)
: m_geometry1(geometry1)
, m_strategy(strategy)
{}
template <typename Geometry2>
inline bool operator()(Geometry2 const& geometry2) const
{
return equals<Geometry1, Geometry2>
::apply(m_geometry1, geometry2, m_strategy);
}
};
template <typename Strategy>
static inline bool apply(
Geometry1 const& geometry1,
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry2,
Strategy const& strategy
)
{
return boost::apply_visitor(visitor<Strategy>(geometry1, strategy), geometry2);
}
};
template <
BOOST_VARIANT_ENUM_PARAMS(typename T1),
BOOST_VARIANT_ENUM_PARAMS(typename T2)
>
struct equals<
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T1)>,
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T2)>
>
{
template <typename Strategy>
struct visitor: static_visitor<bool>
{
Strategy const& m_strategy;
visitor(Strategy const& strategy)
: m_strategy(strategy)
{}
template <typename Geometry1, typename Geometry2>
inline bool operator()(Geometry1 const& geometry1,
Geometry2 const& geometry2) const
{
return equals<Geometry1, Geometry2>
::apply(geometry1, geometry2, m_strategy);
}
};
template <typename Strategy>
static inline bool apply(
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T1)> const& geometry1,
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T2)> const& geometry2,
Strategy const& strategy
)
{
return boost::apply_visitor(visitor<Strategy>(strategy), geometry1, geometry2);
}
};
} // namespace resolve_variant
/*!
\brief \brief_check{are spatially equal}
\details \details_check12{equals, is spatially equal}. Spatially equal means
that the same point set is included. A box can therefore be spatially equal
to a ring or a polygon, or a linestring can be spatially equal to a
multi-linestring or a segment. This only works theoretically, not all
combinations are implemented yet.
\ingroup equals
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam Strategy \tparam_strategy{Equals}
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\param strategy \param_strategy{equals}
\return \return_check2{are spatially equal}
\qbk{distinguish,with strategy}
\qbk{[include reference/algorithms/equals.qbk]}
*/
template <typename Geometry1, typename Geometry2, typename Strategy>
inline bool equals(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Strategy const& strategy)
{
return resolve_variant::equals
<
Geometry1, Geometry2
>::apply(geometry1, geometry2, strategy);
}
/*!
\brief \brief_check{are spatially equal}
\details \details_check12{equals, is spatially equal}. Spatially equal means
that the same point set is included. A box can therefore be spatially equal
to a ring or a polygon, or a linestring can be spatially equal to a
multi-linestring or a segment. This only works theoretically, not all
combinations are implemented yet.
\ingroup equals
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\return \return_check2{are spatially equal}
\qbk{[include reference/algorithms/equals.qbk]}
*/
template <typename Geometry1, typename Geometry2>
inline bool equals(Geometry1 const& geometry1, Geometry2 const& geometry2)
{
return resolve_variant::equals<Geometry1, Geometry2>
::apply(geometry1, geometry2, default_strategy());
}
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_EQUALS_INTERFACE_HPP