// (C) Copyright Matt Borland 2021. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_CCMATH_FMOD_HPP #define BOOST_MATH_CCMATH_FMOD_HPP #include <cmath> #include <cstdint> #include <limits> #include <type_traits> #include <boost/math/tools/is_constant_evaluated.hpp> #include <boost/math/ccmath/abs.hpp> #include <boost/math/ccmath/isinf.hpp> #include <boost/math/ccmath/isnan.hpp> #include <boost/math/ccmath/isfinite.hpp> namespace boost::math::ccmath { namespace detail { template <typename ReturnType, typename T1, typename T2> inline constexpr ReturnType fmod_impl(T1 x, T2 y) noexcept { if(x == y) { return ReturnType(0); } else { while(x >= y) { x -= y; } return static_cast<ReturnType>(x); } } } // Namespace detail template <typename Real, std::enable_if_t<!std::is_integral_v<Real>, bool> = true> inline constexpr Real fmod(Real x, Real y) noexcept { if(BOOST_MATH_IS_CONSTANT_EVALUATED(x)) { return boost::math::ccmath::abs(x) == Real(0) && y != Real(0) ? x : boost::math::ccmath::isinf(x) && !boost::math::ccmath::isnan(y) ? std::numeric_limits<Real>::quiet_NaN() : boost::math::ccmath::abs(y) == Real(0) && !boost::math::ccmath::isnan(x) ? std::numeric_limits<Real>::quiet_NaN() : boost::math::ccmath::isinf(y) && boost::math::ccmath::isfinite(x) ? x : boost::math::ccmath::isnan(x) ? std::numeric_limits<Real>::quiet_NaN() : boost::math::ccmath::isnan(y) ? std::numeric_limits<Real>::quiet_NaN() : boost::math::ccmath::detail::fmod_impl<Real>(x, y); } else { using std::fmod; return fmod(x, y); } } template <typename T1, typename T2> inline constexpr auto fmod(T1 x, T2 y) noexcept { if(BOOST_MATH_IS_CONSTANT_EVALUATED(x)) { // If the type is an integer (e.g. epsilon == 0) then set the epsilon value to 1 so that type is at a minimum // cast to double constexpr auto T1p = std::numeric_limits<T1>::epsilon() > 0 ? std::numeric_limits<T1>::epsilon() : 1; constexpr auto T2p = std::numeric_limits<T2>::epsilon() > 0 ? std::numeric_limits<T2>::epsilon() : 1; using promoted_type = #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS std::conditional_t<T1p <= LDBL_EPSILON && T1p <= T2p, T1, std::conditional_t<T2p <= LDBL_EPSILON && T2p <= T1p, T2, #endif std::conditional_t<T1p <= DBL_EPSILON && T1p <= T2p, T1, std::conditional_t<T2p <= DBL_EPSILON && T2p <= T1p, T2, double #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS >>>>; #else >>; #endif return boost::math::ccmath::fmod(promoted_type(x), promoted_type(y)); } else { using std::fmod; return fmod(x, y); } } inline constexpr float fmodf(float x, float y) noexcept { return boost::math::ccmath::fmod(x, y); } #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS inline constexpr long double fmodl(long double x, long double y) noexcept { return boost::math::ccmath::fmod(x, y); } #endif } // Namespaces #endif // BOOST_MATH_CCMATH_FMOD_HPP