// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2014 Bruno Lalande, Paris, France. // Copyright (c) 2009-2014 Mateusz Loskot, London, UK. // Copyright (c) 2014 Adam Wulkiewicz, Lodz, Poland. // This file was modified by Oracle on 2014-2020. // Modifications copyright (c) 2014-2020, Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_FOR_EACH_HPP #define BOOST_GEOMETRY_ALGORITHMS_FOR_EACH_HPP #include <algorithm> #include <boost/range/begin.hpp> #include <boost/range/end.hpp> #include <boost/range/reference.hpp> #include <boost/range/value_type.hpp> #include <boost/geometry/algorithms/detail/interior_iterator.hpp> #include <boost/geometry/algorithms/not_implemented.hpp> #include <boost/geometry/core/closure.hpp> #include <boost/geometry/core/exterior_ring.hpp> #include <boost/geometry/core/interior_rings.hpp> #include <boost/geometry/core/point_type.hpp> #include <boost/geometry/core/tag_cast.hpp> #include <boost/geometry/core/tags.hpp> #include <boost/geometry/geometries/concepts/check.hpp> #include <boost/geometry/geometries/segment.hpp> #include <boost/geometry/util/range.hpp> #include <boost/geometry/util/type_traits.hpp> #include <boost/geometry/views/detail/indexed_point_view.hpp> namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace for_each { struct fe_point_point { template <typename Point, typename Functor> static inline bool apply(Point& point, Functor&& f) { return f(point); } }; struct fe_segment_point { template <typename Point, typename Functor> static inline bool apply(Point& , Functor&& ) { // TODO: if non-const, we should extract the points from the segment // and call the functor on those two points //model::referring_segment<Point> s(point, point); //return f(s); return true; } }; struct fe_point_segment { template <typename Segment, typename Functor> static inline bool apply(Segment& s, Functor&& f) { // Or should we guarantee that the type of points is // point_type<Segment>::type ? geometry::detail::indexed_point_view<Segment, 0> p0(s); geometry::detail::indexed_point_view<Segment, 1> p1(s); return f(p0) && f(p1); } }; struct fe_segment_segment { template <typename Segment, typename Functor> static inline bool apply(Segment& s, Functor&& f) { // Or should we guarantee that the type of segment is // referring_segment<...> ? return f(s); } }; template <typename Range> struct fe_range_value { typedef util::transcribe_const_t < Range, typename boost::range_value<Range>::type > type; }; template <typename Range> struct fe_point_type { typedef util::transcribe_const_t < Range, typename point_type<Range>::type > type; }; template <typename Range> struct fe_point_type_is_referencable { static const bool value = std::is_const<Range>::value || std::is_same < typename boost::range_reference<Range>::type, typename fe_point_type<Range>::type& >::value; }; template < typename Range, bool UseReferences = fe_point_type_is_referencable<Range>::value > struct fe_point_call_f { template <typename Iterator, typename Functor> static inline bool apply(Iterator it, Functor&& f) { // Implementation for real references (both const and mutable) // and const proxy references. typedef typename fe_point_type<Range>::type point_type; point_type& p = *it; return f(p); } }; template <typename Range> struct fe_point_call_f<Range, false> { template <typename Iterator, typename Functor> static inline bool apply(Iterator it, Functor&& f) { // Implementation for proxy mutable references. // Temporary point has to be created and assigned afterwards. typedef typename fe_point_type<Range>::type point_type; point_type p = *it; bool result = f(p); *it = p; return result; } }; struct fe_point_range { template <typename Range, typename Functor> static inline bool apply(Range& range, Functor&& f) { auto const end = boost::end(range); for (auto it = boost::begin(range); it != end; ++it) { if (! fe_point_call_f<Range>::apply(it, f)) { return false; } } return true; } }; template < typename Range, bool UseReferences = fe_point_type_is_referencable<Range>::value > struct fe_segment_call_f { template <typename Iterator, typename Functor> static inline bool apply(Iterator it0, Iterator it1, Functor&& f) { // Implementation for real references (both const and mutable) // and const proxy references. // If const proxy references are returned by iterators // then const real references here prevents temporary // objects from being destroyed. typedef typename fe_point_type<Range>::type point_type; point_type& p0 = *it0; point_type& p1 = *it1; model::referring_segment<point_type> s(p0, p1); return f(s); } }; template <typename Range> struct fe_segment_call_f<Range, false> { template <typename Iterator, typename Functor> static inline bool apply(Iterator it0, Iterator it1, Functor&& f) { // Mutable proxy references returned by iterators. // Temporary points have to be created and assigned afterwards. typedef typename fe_point_type<Range>::type point_type; point_type p0 = *it0; point_type p1 = *it1; model::referring_segment<point_type> s(p0, p1); bool result = f(s); *it0 = p0; *it1 = p1; return result; } }; template <closure_selector Closure> struct fe_segment_range_with_closure { template <typename Range, typename Functor> static inline bool apply(Range& range, Functor&& f) { auto it = boost::begin(range); auto const end = boost::end(range); if (it == end) { return true; } auto previous = it++; if (it == end) { return fe_segment_call_f<Range>::apply(previous, previous, f); } while (it != end) { if (! fe_segment_call_f<Range>::apply(previous, it, f)) { return false; } previous = it++; } return true; } }; template <> struct fe_segment_range_with_closure<open> { template <typename Range, typename Functor> static inline bool apply(Range& range, Functor&& f) { fe_segment_range_with_closure<closed>::apply(range, f); auto const begin = boost::begin(range); auto end = boost::end(range); if (begin == end) { return true; } --end; if (begin == end) { // single point ranges already handled in closed case above return true; } return fe_segment_call_f<Range>::apply(end, begin, f); } }; struct fe_segment_range { template <typename Range, typename Functor> static inline bool apply(Range& range, Functor&& f) { return fe_segment_range_with_closure < closure<Range>::value >::apply(range, f); } }; template <typename RangePolicy> struct for_each_polygon { template <typename Polygon, typename Functor> static inline bool apply(Polygon& poly, Functor&& f) { if (! RangePolicy::apply(exterior_ring(poly), f)) { return false; } typename interior_return_type<Polygon>::type rings = interior_rings(poly); auto const end = boost::end(rings); for (auto it = boost::begin(rings); it != end; ++it) { // NOTE: Currently lvalue iterator required if (! RangePolicy::apply(*it, f)) { return false; } } return true; } }; // Implementation of multi, for both point and segment, // just calling the single version. template <typename SinglePolicy> struct for_each_multi { template <typename MultiGeometry, typename Functor> static inline bool apply(MultiGeometry& multi, Functor&& f) { auto const end = boost::end(multi); for (auto it = boost::begin(multi); it != end; ++it) { // NOTE: Currently lvalue iterator required if (! SinglePolicy::apply(*it, f)) { return false; } } return true; } }; }} // namespace detail::for_each #endif // DOXYGEN_NO_DETAIL #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { template < typename Geometry, typename Tag = typename tag_cast<typename tag<Geometry>::type, multi_tag>::type > struct for_each_point: not_implemented<Tag> {}; template <typename Point> struct for_each_point<Point, point_tag> : detail::for_each::fe_point_point {}; template <typename Segment> struct for_each_point<Segment, segment_tag> : detail::for_each::fe_point_segment {}; template <typename Linestring> struct for_each_point<Linestring, linestring_tag> : detail::for_each::fe_point_range {}; template <typename Ring> struct for_each_point<Ring, ring_tag> : detail::for_each::fe_point_range {}; template <typename Polygon> struct for_each_point<Polygon, polygon_tag> : detail::for_each::for_each_polygon < detail::for_each::fe_point_range > {}; template <typename MultiGeometry> struct for_each_point<MultiGeometry, multi_tag> : detail::for_each::for_each_multi < // Specify the dispatch of the single-version as policy for_each_point < typename detail::for_each::fe_range_value < MultiGeometry >::type > > {}; template < typename Geometry, typename Tag = typename tag<Geometry>::type > struct for_each_segment: not_implemented<Tag> {}; template <typename Point> struct for_each_segment<Point, point_tag> : detail::for_each::fe_segment_point // empty {}; template <typename Segment> struct for_each_segment<Segment, segment_tag> : detail::for_each::fe_segment_segment {}; template <typename Linestring> struct for_each_segment<Linestring, linestring_tag> : detail::for_each::fe_segment_range {}; template <typename Ring> struct for_each_segment<Ring, ring_tag> : detail::for_each::fe_segment_range {}; template <typename Polygon> struct for_each_segment<Polygon, polygon_tag> : detail::for_each::for_each_polygon < detail::for_each::fe_segment_range > {}; template <typename MultiPoint> struct for_each_segment<MultiPoint, multi_point_tag> : detail::for_each::fe_segment_point // empty {}; template <typename MultiLinestring> struct for_each_segment<MultiLinestring, multi_linestring_tag> : detail::for_each::for_each_multi < detail::for_each::fe_segment_range > {}; template <typename MultiPolygon> struct for_each_segment<MultiPolygon, multi_polygon_tag> : detail::for_each::for_each_multi < detail::for_each::for_each_polygon < detail::for_each::fe_segment_range > > {}; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH template<typename Geometry, typename UnaryPredicate> inline bool all_points_of(Geometry& geometry, UnaryPredicate p) { concepts::check<Geometry>(); return dispatch::for_each_point<Geometry>::apply(geometry, p); } template<typename Geometry, typename UnaryPredicate> inline bool all_segments_of(Geometry const& geometry, UnaryPredicate p) { concepts::check<Geometry const>(); return dispatch::for_each_segment<Geometry const>::apply(geometry, p); } template<typename Geometry, typename UnaryPredicate> inline bool any_point_of(Geometry& geometry, UnaryPredicate p) { concepts::check<Geometry>(); return ! dispatch::for_each_point<Geometry>::apply(geometry, [&](auto&& pt) { return ! p(pt); }); } template<typename Geometry, typename UnaryPredicate> inline bool any_segment_of(Geometry const& geometry, UnaryPredicate p) { concepts::check<Geometry const>(); return ! dispatch::for_each_segment<Geometry const>::apply(geometry, [&](auto&& s) { return ! p(s); }); } template<typename Geometry, typename UnaryPredicate> inline bool none_point_of(Geometry& geometry, UnaryPredicate p) { concepts::check<Geometry>(); return dispatch::for_each_point<Geometry>::apply(geometry, [&](auto&& pt) { return ! p(pt); }); } template<typename Geometry, typename UnaryPredicate> inline bool none_segment_of(Geometry const& geometry, UnaryPredicate p) { concepts::check<Geometry const>(); return dispatch::for_each_segment<Geometry const>::apply(geometry, [&](auto&& s) { return ! p(s); }); } /*! \brief \brf_for_each{point} \details \det_for_each{point} \ingroup for_each \param geometry \param_geometry \param f \par_for_each_f{point} \tparam Geometry \tparam_geometry \tparam Functor \tparam_functor \qbk{[include reference/algorithms/for_each_point.qbk]} \qbk{[heading Example]} \qbk{[for_each_point] [for_each_point_output]} \qbk{[for_each_point_const] [for_each_point_const_output]} */ template<typename Geometry, typename Functor> inline Functor for_each_point(Geometry& geometry, Functor f) { concepts::check<Geometry>(); dispatch::for_each_point<Geometry>::apply(geometry, [&](auto&& pt) { f(pt); // TODO: Implement separate function? return true; }); return f; } /*! \brief \brf_for_each{segment} \details \det_for_each{segment} \ingroup for_each \param geometry \param_geometry \param f \par_for_each_f{segment} \tparam Geometry \tparam_geometry \tparam Functor \tparam_functor \qbk{[include reference/algorithms/for_each_segment.qbk]} \qbk{[heading Example]} \qbk{[for_each_segment_const] [for_each_segment_const_output]} */ template<typename Geometry, typename Functor> inline Functor for_each_segment(Geometry& geometry, Functor f) { concepts::check<Geometry>(); dispatch::for_each_segment<Geometry>::apply(geometry, [&](auto&& s) { f(s); // TODO: Implement separate function? return true; }); return f; } }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_FOR_EACH_HPP