|
|
#include "stdafx.h"
|
|
|
#include "geocompute.h"
|
|
|
|
|
|
|
|
|
GeoCompute::GeoCompute(void)
|
|
|
{
|
|
|
}
|
|
|
|
|
|
|
|
|
GeoCompute::~GeoCompute(void)
|
|
|
{
|
|
|
}
|
|
|
|
|
|
/*@brief 根据起点坐标、方位角、距离,计算另一点坐标。
|
|
|
* 使用Vincenty's公式求解,使用WGS-84椭球
|
|
|
* startPoint:起始点地理坐标点(lat(-90到90),lon(-180,180))
|
|
|
* bearing:方位角(度)
|
|
|
* dist:两点之间距离(km)
|
|
|
*/
|
|
|
void GeoCompute::computeOffsetGeoPosition(double lon1, double lat1, double bearing, double dist,double& targetLon,double& targetLat)
|
|
|
{
|
|
|
//角度转化为弧度
|
|
|
// qreal lon1 = (fmod(startPoint.x()+540,360)-180.0)*PI/180;
|
|
|
lon1 = lon1*PI/180.0;
|
|
|
lat1 = lat1*PI/180.0;
|
|
|
bearing = bearing*PI/180.0;
|
|
|
dist = dist*1000;
|
|
|
|
|
|
//WGS-84椭球参数
|
|
|
double flat = 298.257223563;
|
|
|
double a = 6378137.0;
|
|
|
double b = 6356752.314245;
|
|
|
//开始求解坐标
|
|
|
double f = 1/flat;
|
|
|
double sb = sin(bearing);
|
|
|
double cb = cos(bearing);
|
|
|
double tu1 = (1-f)*tan(lat1);
|
|
|
double cu1 = 1/sqrt((1+tu1*tu1));
|
|
|
double su1 = tu1*cu1;
|
|
|
double s2 = atan2(tu1, cb);
|
|
|
double sa = cu1*sb;
|
|
|
double csa = 1-sa*sa;
|
|
|
double us = csa*(a*a - b*b)/(b*b);
|
|
|
double A = 1+us/16384*(4096+us*(-768+us*(320-175*us)));
|
|
|
double B = us/1024*(256+us*(-128+us*(74-47*us)));
|
|
|
double s1 = dist/(b*A);
|
|
|
double s1p = 2*PI;
|
|
|
|
|
|
|
|
|
double cs1m = 0.0;
|
|
|
double ss1 = 0.0;
|
|
|
double cs1 = 0.0;
|
|
|
double ds1 = 0.0;
|
|
|
|
|
|
while (abs(s1-s1p) > 1e-12)
|
|
|
{
|
|
|
cs1m = cos(2*s2+s1);
|
|
|
ss1 = sin(s1);
|
|
|
cs1 = cos(s1);
|
|
|
ds1 = B*ss1*(cs1m+B/4*(cs1*(-1+2*cs1m*cs1m)- B/6*cs1m*(-3+4*ss1*ss1)*(-3+4*cs1m*cs1m)));
|
|
|
s1p = s1;
|
|
|
s1 = dist/(b*A)+ds1;
|
|
|
}
|
|
|
|
|
|
double t = su1*ss1-cu1*cs1*cb;
|
|
|
double lat2 = atan2(su1*cs1+cu1*ss1*cb, (1-f)*sqrt(sa*sa + t*t));
|
|
|
double l2 = atan2(ss1*sb, cu1*cs1-su1*ss1*cb);
|
|
|
double c = f/16*csa*(4+f*(4-3*csa));
|
|
|
double l = l2-(1-c)*f*sa* (s1+c*ss1*(cs1m+c*cs1*(-1+2*cs1m*cs1m)));
|
|
|
double lon2 = lon1+l;
|
|
|
|
|
|
targetLon = lon2*180/PI;
|
|
|
targetLat = lat2*180/PI;
|
|
|
}
|
|
|
|
|
|
// 使用Vincenty's公式计算地理距离
|
|
|
double GeoCompute::VincentyDistance(double lon1, double lat1, double lon2, double lat2) {
|
|
|
// 常量定义
|
|
|
const double a = 6378137.0; // 地球长半轴 (米)
|
|
|
const double f = 1 / 298.257223563; // 地球扁率
|
|
|
const double b = a * (1 - f); // 地球短半轴 (米)
|
|
|
|
|
|
|
|
|
lat1 = lat1* M_PI / 180.0;
|
|
|
lon1 = lon1* M_PI / 180.0;
|
|
|
lat2 = lat2* M_PI / 180.0;
|
|
|
lon2 = lon2* M_PI / 180.0;
|
|
|
|
|
|
double L = lon2 - lon1;
|
|
|
double U1 = atan((1 - f) * tan(lat1));
|
|
|
double U2 = atan((1 - f) * tan(lat2));
|
|
|
double sinU1 = sin(U1), cosU1 = cos(U1);
|
|
|
double sinU2 = sin(U2), cosU2 = cos(U2);
|
|
|
|
|
|
double lambda = L, lambdaP;
|
|
|
int iterLimit = 100;
|
|
|
double sinLambda, cosLambda;
|
|
|
double sinSigma, cosSigma, sigma;
|
|
|
double sinAlpha, cos2Alpha, cos2SigmaM;
|
|
|
double C;
|
|
|
|
|
|
do {
|
|
|
sinLambda = sin(lambda);
|
|
|
cosLambda = cos(lambda);
|
|
|
sinSigma = sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda) +
|
|
|
(cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) * (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda));
|
|
|
if (sinSigma == 0) return 0; // co-incident points
|
|
|
cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda;
|
|
|
sigma = atan2(sinSigma, cosSigma);
|
|
|
sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
|
|
|
cos2Alpha = 1 - sinAlpha * sinAlpha;
|
|
|
cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cos2Alpha;
|
|
|
if (cos2Alpha == 0) cos2SigmaM = 0; // equatorial line: cos2Alpha=0
|
|
|
C = f / 16 * cos2Alpha * (4 + f * (4 - 3 * cos2Alpha));
|
|
|
lambdaP = lambda;
|
|
|
lambda = L + (1 - C) * f * sinAlpha *
|
|
|
(sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)));
|
|
|
} while (fabs(lambda - lambdaP) > 1e-12 && --iterLimit > 0);
|
|
|
|
|
|
if (iterLimit == 0) return -1; // formula failed to converge, return -1 or an appropriate error code
|
|
|
|
|
|
double uSquared = cos2Alpha * (a * a - b * b) / (b * b);
|
|
|
double A = 1 + uSquared / 16384 * (4096 + uSquared * (-768 + uSquared * (320 - 175 * uSquared)));
|
|
|
double B = uSquared / 1024 * (256 + uSquared * (-128 + uSquared * (74 - 47 * uSquared)));
|
|
|
double deltaSigma = B * sinSigma *
|
|
|
(cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) -
|
|
|
B / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM)));
|
|
|
|
|
|
double s = b * A * (sigma - deltaSigma);
|
|
|
|
|
|
return s;
|
|
|
}
|