You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

133 lines
4.0 KiB
C++

#include "stdafx.h"
#include "geocompute.h"
GeoCompute::GeoCompute(void)
{
}
GeoCompute::~GeoCompute(void)
{
}
/*@brief <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EAA1A2>λ<EFBFBD>ǡ<EFBFBD><C7A1><EFBFBD><EFBFBD><EFBFBD><EBA3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD>
* ʹ<EFBFBD><EFBFBD>Vincenty's<EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>,ʹ<EFBFBD><EFBFBD>WGS-84<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
* startPoint:<EFBFBD><EFBFBD>ʼ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>lat(-90<EFBFBD><EFBFBD>90)<EFBFBD><EFBFBD>lon(-180,180)<EFBFBD><EFBFBD>
* bearing:<EFBFBD><EFBFBD>λ<EFBFBD>ǣ<EFBFBD><EFBFBD>ȣ<EFBFBD>
* dist:<EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>(km)
*/
void GeoCompute::computeOffsetGeoPosition(double lon1, double lat1, double bearing, double dist,double& targetLon,double& targetLat)
{
//<2F>Ƕ<EFBFBD>ת<EFBFBD><D7AA>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD>
// qreal lon1 = (fmod(startPoint.x()+540,360)-180.0)*PI/180;
lon1 = lon1*PI/180.0;
lat1 = lat1*PI/180.0;
bearing = bearing*PI/180.0;
dist = dist*1000;
//WGS-84<38><34><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
double flat = 298.257223563;
double a = 6378137.0;
double b = 6356752.314245;
//<2F><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
double f = 1/flat;
double sb = sin(bearing);
double cb = cos(bearing);
double tu1 = (1-f)*tan(lat1);
double cu1 = 1/sqrt((1+tu1*tu1));
double su1 = tu1*cu1;
double s2 = atan2(tu1, cb);
double sa = cu1*sb;
double csa = 1-sa*sa;
double us = csa*(a*a - b*b)/(b*b);
double A = 1+us/16384*(4096+us*(-768+us*(320-175*us)));
double B = us/1024*(256+us*(-128+us*(74-47*us)));
double s1 = dist/(b*A);
double s1p = 2*PI;
double cs1m = 0.0;
double ss1 = 0.0;
double cs1 = 0.0;
double ds1 = 0.0;
while (abs(s1-s1p) > 1e-12)
{
cs1m = cos(2*s2+s1);
ss1 = sin(s1);
cs1 = cos(s1);
ds1 = B*ss1*(cs1m+B/4*(cs1*(-1+2*cs1m*cs1m)- B/6*cs1m*(-3+4*ss1*ss1)*(-3+4*cs1m*cs1m)));
s1p = s1;
s1 = dist/(b*A)+ds1;
}
double t = su1*ss1-cu1*cs1*cb;
double lat2 = atan2(su1*cs1+cu1*ss1*cb, (1-f)*sqrt(sa*sa + t*t));
double l2 = atan2(ss1*sb, cu1*cs1-su1*ss1*cb);
double c = f/16*csa*(4+f*(4-3*csa));
double l = l2-(1-c)*f*sa* (s1+c*ss1*(cs1m+c*cs1*(-1+2*cs1m*cs1m)));
double lon2 = lon1+l;
targetLon = lon2*180/PI;
targetLat = lat2*180/PI;
}
// ʹ<><CAB9>Vincenty's<><73>ʽ<EFBFBD><CABD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
double GeoCompute::VincentyDistance(double lon1, double lat1, double lon2, double lat2) {
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
const double a = 6378137.0; // <20><><EFBFBD>򳤰<EFBFBD><F2B3A4B0><EFBFBD> (<28><>)
const double f = 1 / 298.257223563; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
const double b = a * (1 - f); // <20><><EFBFBD><EFBFBD><EFBFBD>̰<EFBFBD><CCB0><EFBFBD> (<28><>)
lat1 = lat1* M_PI / 180.0;
lon1 = lon1* M_PI / 180.0;
lat2 = lat2* M_PI / 180.0;
lon2 = lon2* M_PI / 180.0;
double L = lon2 - lon1;
double U1 = atan((1 - f) * tan(lat1));
double U2 = atan((1 - f) * tan(lat2));
double sinU1 = sin(U1), cosU1 = cos(U1);
double sinU2 = sin(U2), cosU2 = cos(U2);
double lambda = L, lambdaP;
int iterLimit = 100;
double sinLambda, cosLambda;
double sinSigma, cosSigma, sigma;
double sinAlpha, cos2Alpha, cos2SigmaM;
double C;
do {
sinLambda = sin(lambda);
cosLambda = cos(lambda);
sinSigma = sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda) +
(cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) * (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda));
if (sinSigma == 0) return 0; // co-incident points
cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda;
sigma = atan2(sinSigma, cosSigma);
sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
cos2Alpha = 1 - sinAlpha * sinAlpha;
cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cos2Alpha;
if (cos2Alpha == 0) cos2SigmaM = 0; // equatorial line: cos2Alpha=0
C = f / 16 * cos2Alpha * (4 + f * (4 - 3 * cos2Alpha));
lambdaP = lambda;
lambda = L + (1 - C) * f * sinAlpha *
(sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)));
} while (fabs(lambda - lambdaP) > 1e-12 && --iterLimit > 0);
if (iterLimit == 0) return -1; // formula failed to converge, return -1 or an appropriate error code
double uSquared = cos2Alpha * (a * a - b * b) / (b * b);
double A = 1 + uSquared / 16384 * (4096 + uSquared * (-768 + uSquared * (320 - 175 * uSquared)));
double B = uSquared / 1024 * (256 + uSquared * (-128 + uSquared * (74 - 47 * uSquared)));
double deltaSigma = B * sinSigma *
(cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) -
B / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM)));
double s = b * A * (sigma - deltaSigma);
return s;
}